
Architecture
ENG1 Team 9

Jacob Dicken
Bertie Cartwright
William Croft
James Dovener
Henry Chan



Architecture Design Process
After creating the requirements, we had to make some decisions about the style and theme
of our game before we could progress with creating an initial architecture, because the
customer gave us a lot of freedom on those aspects of the product. The theme we decided
on was retro-realism. We felt this would satisfy the non-functional requirement NFR_THEME
because it is a popular style for video games of a similar nature that are played by similar
demographics, such as older versions of The Sims. We also decided on a tile-based art
style, because tiles integrate perfectly with the retro part of the theme, and they also simplify
the implementation of the game, which will help to achieve the non-functional requirement
NFR_PERFORMANCE.

We chose to use Responsibility Driven Design (RDD) to create the initial architecture for our
game. Due to its focus on behaviours, we felt that it would give us freedom to abstract the
low-level details for as long as possible while developing the design. This is because RDD
brings the benefit of increased encapsulation by leaving the implementation of
responsibilities to be private to each RDD object. It is also a well suited design technique for
developing object-oriented programs (ideal as we are working with Java) as the technique
makes good use of the inheritance hierarchy.

We began by creating a designer story based on the requirements that we had established
and the style and themes we had decided upon. The goal here was to write a few sentences
which encapsulated the requirements which would help us to all be on the same page with
what we were creating, and to decrease friction during the design process. We settled on the
following:

“We are developing a single-player 2D sandbox game where the user has 5 minutes to
create a university campus by placing buildings on a predetermined map. The game is to be
run as a desktop application running locally. The map will be tile-based and buildings can be
placed on the tiles by the user. There will be a 5-minute timer that counts down. There will
also be a counter for how many of each building category the user has placed.”

From here we began creating our first themes and candidate objects, and iterating on them,
following the Responsibility Driven Design process using CRC cards (photos of these can be
found on our website). During this stage, we were leaning towards a delegated control style,
as it would allow us to keep our discussion at a higher level and we wanted to delegate work
to objects that are more specialised to keep the design easy to understand. Once we were
happy with our set of candidate objects, we began to map our candidates to classes and
constructed our initial UML class diagram (Diagram 1), representing the overall structure of
the project as we envisioned it at that point.

As shown in the diagram, we decided to use a closed, layered structure for our architecture,
which takes the form of an inclusion tree in our class diagram. This gives one top-level
object (Game) responsibility for everything in our application, and it handles this by dividing
the work into smaller sections, and delegating them to smaller objects in the layer beneath,
which it holds references to.

https://jd760.github.io/Team9-UniSim/architecture.html


Diagram 1

We decided upon this structure because it encourages modular design, each object
delegating its unrelated tasks to separate objects on a lower layer, and having no knowledge
of other objects or systems not in the same subtree. By having objects not hold references to
objects higher in the tree, we reduce bugs and keep the inclusions logical. Similar class
structures are used in modern games and game engines, because the tree is easily scalable
and it makes best use of the object-oriented paradigm.

Another advantage of this architecture is the ease of adding new features. Due to the nature
of systems being separated into their own subtrees and not having access to the layers
above, adding a new system can be done by creating the necessary classes, then inserting
them into the right section of the tree. For example, if we were to add a player to the game,
we would create a class to manage the data and behaviour of the player, which we would
then create a reference to from the world class (because the player lives within the world).
We would then just modify the render method for the world and we would be done. The main
advantage of this is that no other parts of the game would be affected, increasing code
modularity and readability. This quality is needed to satisfy the non-functional requirement
NFR_CODE_MODULARITY.

Before deciding on this structure, we rejected a lot of other concepts. One we considered
heavily was the use of an entity component system. We recognised that the use of this type
of system can be very advantageous in games, both in terms of speed, code structure and
readability. The main benefit of this comes when there are a lot of different objects that reuse
subsets of a set of components. We decided that in the case of our game, which has only a
few types of objects (buildings, tiles and menus), using an entity component system would
not be advantageous. Because there are so few objects, and in order for them to be
implemented efficiently, their implementations will be quite dissimilar, the advantages of an



entity component system would be very small, and not enough to outweigh the increased
complexity introduced by such a complicated system in such a small game.

The above class diagram helps us to meet the following functional requirements:
FR_MAP - By the inclusion of the world class, which holds a collection of Tile objects, which
make up the map.
FR_BUILDING - The building class will facilitate the placement of buildings.
FR_OBSTACLES - By the use of tiles, we can have certain tiles be non-buildable, which
could then be used to make obstacles on the map.
FR_TIMER - The timer class will allow us to display a counting down timer to the user.
FR_BUILDING_COUNTER - Facilitated by the building counter class

Evolution of the Architecture
Implementation for the project lasted for about 3 weeks. For the first week or so, we followed
the initial architecture class diagram quite closely. As we were working with the libGDX game
engine, there were a few things that we changed, such as making use of the libGDX classes
TiledMap and IsometricTiledMapRenderer. This eliminated the need for our own Tile class,
and reduced the complexity of the world class, which improved the conciseness of the code,
and harnessed the well-optimised code provided by libGDX. This helps us work towards
requirements NFR_CODE_MODULARITY and NFR_PERFORMANCE respectively. To
reduce confusion, we also renamed the top level Game class to Main, as the top level
libGDX class that Main/Game needs to extend is already called Game.

When we came to implementing the menu interfaces for the game, it became clear that, in
order to make optimal use of libGDX’s menu framework (scene2d-ui), we would need to
deviate slightly from our original application structure. This is because of the way scene2d
provides multiple menus - the Screen interface. This would allow us to easily switch between
different menus and the game screen without having to reload each menu before every
switch. In order to take full advantage of this, it made sense for the World object to be held
by a Screen Class, rather than the game class, and then make the Main class hold a
reference to all the different screens.

Quite soon after we began to implement the idea above, we encountered a problem with this
change to our architecture: it became necessary for the individual implementations of the
Screen interface to be able to modify the current screen that is being displayed to the user.
For example, if you are currently being shown the startup screen of the game, and you press
play, the screen needs to detect that click, then somehow notify the Main class that it needs
to switch the current screen to the game screen. This conflicts with our ideal tree structure in
which each object has no knowledge of the objects that hold references to it.

At this point, it became necessary to research how more established libGDX games
accomplish this. Taking inspiration from the game Mindustry, which has a class called
Vars1that holds all the information about the current state of the game as static members, we

1 “Anuken/Mindustry,” GitHub, 2017.
https://github.com/Anuken/Mindustry/blob/master/core/src/mindustry/Vars.java (accessed Nov. 07,
2024).



created a class called GameState which holds information such as the current screen and
whether or not the game is paused as static member variables. This allows those fields to be
accessed similarly to global variables by any code that needs to. It is important that we make
only minimal use of this class, as overdependence on global variables can lead to code that
is very difficult to trace.

With these new changes, we were able to continue smoothly to the end of the current
development stage, implementing all the features required for this assessment. The tree
structure is now split into individual screen classes and the state of the game is stored as
static members of a class. This was necessary because we are working with the
event-based libGDX in combination with our own layered architecture. This highlights how it
is not necessary to conform perfectly to any specific architectural concept, but to take the
best bits of all of them to suit our needs, while still leaning more towards one (layered). The
final structure of the architecture is shown below. (Diagram 2)

Diagram 2



Behavioural Diagrams
We created a state diagram to show the different game states that the program can be in
throughout the gameplay. The idea of this diagram is to show all the different menu screens
at a high level. (Diagram 3)

Diagram 3

We also created sequence diagrams to show the main actions that can happen during
gameplay and relate these to our architecture. The most important (complex) behaviours
that can be invoked by the payer are placing a building and traversing the map. The UML
sequence diagrams for each can be seen in Diagrams 4 and 5 respectively. An interim
version of the sequence diagram for placing a building can be found on the website.

Diagram 4

https://jd760.github.io/Team9-UniSim/architecture.html


Diagram 5

Diagram Creation
We chose to create our architectural diagrams using the class diagram, sequence diagram
and state diagram sections of PlantUML2. This is beneficial because the diagrams can be
specified using text, then rendered dynamically using an interpreter. This suited our needs
very well as the text-based sources for our diagrams integrated very well with Git, which was
our chosen version control solution. This was important due to our use of an agile software
development methodology, which necessitated evolving the structure of the project, and
therefore the diagrams over time as we moved through development. The diagrams were
rendered for this document using the online server on PlantUML

2 “PlantUML” PlantUML.com. https://www.plantuml.com/plantuml/uml/


