
Architecture
Group Number: Cohort 1, Group 11
Group Name: Y111 Studios

Group Members:

1. James Hutchinson
2. Somto Igweonu
3. Robert Kisloski
4. Sam Knight
5. Kenneth Kok
6. Ashish Kumar



This document outlines the architecture phase of the development process of our game,
showing the thought process behind the design decisions (that were based on our user and
system requirements), and the relevant tools that we used to create these designs.

We have used the Unified Modeling Language (UML) to create a blueprint of our game. We
have drawn class diagrams to represent the structure of the game by showing its classes,
attributes, methods, and the relationships between the classes. We have drawn a state
diagram to model the behaviour of the system by representing its states and the events that
trigger transitions between those states. We are also including a sequence diagram to
represent the behaviour of the system by showing how objects interact over time.

We have mainly used PlantUML (extension in VSCode and Google Docs), alongside the
graph visualisation software Graphviz, to create our diagrams. We have also used the
PlantUML Web Server and the graph drawing software application Draw.io to create some of
these diagrams.

Class Diagrams:

Grid Position
Addresses the following requirements: UR_BUILDING_PLACEMENT;
FR_PLACE_BUILDING

In the beginning, we designed the GridPosition class to be
a positional object that holds the x-coordinates and
y-coordinates of a certain position.

Grid Area
Addresses the following requirements: UR_BUILDING_PLACEMENT;
FR_PLACE_BUILDING

The grid area class is designed to
hold the information about the area
of the map. The initial design is
linked on the website
(GridArea1.png). Getter methods are
used to retrieve the origin
coordinates of the object and the
contains() methods check whether a
specified position is within the
GridArea map. To get the total range
area of the map, four range methods
are used.

https://www.plantuml.com/plantuml
https://app.diagrams.net/


Collision Detection
Addresses the following requirements: UR_BUILDING_PLACEMENT;
FR_PLACE_BUILDING

The purpose of the collision
detection object is to do the
calculations needed to
check if the player can place
a building on the specified
tile and the associated
operations to place and
remove a building.

Map Object
Addresses the following requirements: UR_BUILDING_PLACEMENT;
FR_PLACE_BUILDING

The map object is an abstract class that
is used to represent a map object within
the game and is a superclass of all
objects. There is also a check for
whether a position is on a valid area of
the map.

Building Variants
Addresses the following requirements: UR_BUILDING_PLACEMENT;
FR_PLACE_BUILDING

To implement the buildings and their respective variants, we utilised an interface that is then
used to implement the four different types of buildings. Each building variant has getter
methods for their width and height as well as the variant class for internal operations.
(Diagram linked on website: BuildingVariants.png)

Buildings
Addresses the following requirements: UR_BUILDING_PLACEMENT;
FR_PLACE_BUILDING

To implement the different types of building, we used an abstract class Building. By
extending Building, each of the buildings store the grid positions and their respective width
and height. (Diagram linked on website: Buildings.png)



Building Counter
Addresses the following requirements: UR_BUILDING_COUNTER;
UR_BUILDING_PLACEMENT; FR_PLACE_BUILDING

Initially, we defined the BuildingCounter
class with a nested enum BuildingType,
which allowed us to track the counts of
different types of buildings using a
dictionary element (buildingMap). We
track the total number of buildings by the
count attribute. The primary functions
included initialising the counter, placing
and removing buildings, and retrieving the
counts. (BuildingCounter1.png on the
website)

As we made progress, we decided to
refactor the BuildingType enum outside
the BuildingCounter class and introduce
an additional method to determine a
building's type based on its instance. The
BuildingCounter class now has
overloaded placeBuilding &
removeBuilding methods that accept a

Building object, which makes it easier to manage buildings.

Clock
Addresses the following requirements:
UR_GAME_CLOCK; UR_PAUSE_GAME;
FR_GAME_PAUSE; FR_GAME_END

Initially, we introduced the Clock class with attributes
to track the start time, pause state, and the total
elapsed duration. It included methods for checking
the elapsed time and the time remaining, and
functionalities to pause and resume the clock. This
version established a basic structure for tracking
time with a maximum duration of 5 minutes.
(Clock1.png on the website)

As we made progress, we decided to refactor the
Clock class to implement an interface (GameTimer)
that allows for a standardised approach to timer
operations, thus facilitating integration with other
components.



Building Manager
Addresses the following requirements: UR_BUILDING_MANAGER;
UR_BUILDING_PLACEMENT; FR_BUILDING_MANAGER

Initially, the building manager had
a public interface that allowed for
a maximum number of buildings to
be added to the game. This
includes validation to ensure a
valid state is maintained.

As progress was made the
publicly available methods were
extracted into an interface for ease
of use. (BuildingManager2.png on
the website)

Building Factory
Addresses the following requirements: UR_BUILDING_PLACEMENT

The BuildingFactory is a static class that is used to facilitate the construction of Buildings
within a fixed way using the attached fields of each building type variant. This provides a
simple interface that can be easily presented to the user. This was refactored later to use
method overloading as can be seen in (BuildingFactory2.png on the website).

Game State
Addresses the following requirements:
UR_BUILDING_PLACEMENT;
UR_GAME_CLOCK; UR_PAUSE_GAME;
FR_PLACE_BUILDINGS; FR_GAME_PAUSE;
FR_GAME_END

The game state object ties all the previously
named components together and manages the
sum game state and allows for modification of it
in one simplified interface. As progress was
made, this object was modified to implement the
interfaces added to all of its internal fields,
ensuring the correct fields were available.
(GameState2.png on the website)



GameScreen
Addresses the following requirements: UR_STATIC_MAP; UR_GAME_PERSPECTIVE;
UR_BUILDING_PLACEMENT; FR_GAME_CONTROL

Initially, we started by creating the idea of an idle state (StartScreen) however this was
deemed an unnecessary addition as it was not a requirement. We decided to just have a
game state (GameScreen) which would be displayed when the game is opened. The
GameScreen would need access to an instance of the map to enact the user’s inputs on and
some clock object to display the time. We then added methods to allow the user to
manipulate the game to meet the requirements such as moving around the map, placing
buildings, and removing buildings. Finally, we needed to create the map and then be able to
update it to show the effects of the user’s inputs.

Behavioural Diagrams:

State Diagram

Here we describe how the
game starts paused and
then once unpaused, the
user can navigate the map,
change the type of building
being placed, place a
building, and, once a
building has been placed,
can remove a building. The
game can be paused from
any state.

https://www.plantuml.com/plantuml/img/JOzD2i8m48NtEKMMBUWTYbcuKiJM0up940VpHv8MHBox2KRQrSnxxsDuCwGCCS_MC64W9JvMESg8wDvipyK3dCR97y7Yp-rwzcdiQbRq30jfo7Y2q2cAA3DvrvVWOa3YOIQZoEdktfRf5N37Wq_qvwve_RA2sqX4R9UhkWMrKMLMmdZvBCq6TAfyymK0


Sequence Diagram

This diagram outlines a typical user interaction with the game. Each use of ‘mouse pressed’
will be on a different location on the screen hence why the result is different however the
location hasn’t been specified here due to this being a high-level overview.


