
Architecture
ENG1 Team 9
1. Jacob Dicken
2. Bertie Cartwright
3. William Croft
4. James Dovener
5. Henry Chan



This document outlines the architecture phase of the development process of our game,
showing the thought process behind the design decisions (that were based on our user
and system requirements), and the relevant tools that we used to create these designs.

We have used the Unified Modeling Language (UML) to create a blueprint of our game. We
have drawn class diagrams to represent the structure of the game by showing its classes,
attributes, methods, and the relationships between the classes. We have drawn a state
diagram to model the behaviour of the system by representing its states and the events
that trigger transitions between those states. We are also including a sequence diagram to
represent the behaviour of the system by showing how objects interact over time.

We have mainly used PlantUML (extension in VSCode and Google Docs) to create our
diagrams. We have also used the PlantUML Web Server to create some of these diagrams.

The game makes use of a simple object-oriented architecture, with one top-level class,
Main, that has responsibility for managing the whole system, but delegates jobs to other
classes that have increasingly less responsibility. For example, MapScreen handles all the
gameplay, but delegates building selection to the BuldingMenu class. This use of
decomposition allows us to write sections of code that only handle one thing, which
simplifies the implementation and should allow it to accomplish that thing well. We feel that
this architectural style is suitable for a small low-risk project such as this game because it is
a very simple architectural style with a low overhead, which is ideal for our small team and
time frame. This way we can spend more time implementing features rather than developing
internal layers or APIs.

Class Diagrams:

Grid Position
Addresses the following requirements: UR_BUILDING_PLACEMENT,
FR_BUILDING_PLACEMENT

In the beginning, we designed the GridPosition class to
be a positional object that holds the x-coordinates and
y-coordinates of a certain position.

https://www.plantuml.com/plantuml


Grid Area
Addresses the following requirements: UR_BUILDING_PLACEMENT,
FR_BUILDING_PLACEMENT

The grid area class is designed to
hold the information about the area
of the map. The initial design is
linked on the website
(GridArea1.png). Getter methods
are used to retrieve the origin
coordinates of the object and the
contains() methods check whether a
specified position is within the
GridArea map. To get the total range
area of the map, four range methods
are used.

Collision Detection
Addresses the following requirements: UR_BUILDING_PLACEMENT,
FR_BUILDING_PLACEMENT

The purpose of the collision
detection object is to do the
calculations needed to
check if the player can
place a building on the
specified tile and the
associated operations to
place and remove a
building.

Structure Before New Requirements



The final architecture structure before the extra requirements is shown above. We included
this in order to justify the quantity of changes that were necessary to make in order to meet
the new requirements. For example, in the above structure, the render(float) method in
MapScreen handles user interface, building placement as well as rendering the world, all the
buildings and the UI, all without delegating work to other methods or classes. It was
necessary to rework most of the user interface and gameplay code in order to make it more
extensible.

BuildingManager
Requirements Addressed: FR_BUILDING_COUNTER, FR_BUILDING_PLACEMENT



BuildingManager holds all buildings placed in the world and handles adding/removing
buildings. It also holds a reference to the BuildingCounter which tracks the number of each
building placed and limits the number of buildings to a maximum. This system did not
change significantly throughout development as the requirements for buildings did not
change between both assessments.

Buildings
Requirements Addressed: FR_BUILDING_MANAGER, FR_BUILDING_PLACEMENT

We made use of an inheritance hierarchy for buildings which allowed us to reuse the logic
code in MapObject and Building for all the building types, while maintaining the ability to add
type-specific code to each building type if required. Most of the building-specific code lies in
the BuildingVariant, which stores the buildings’ size and AssetPath. Building factory
manages all the constructors for each building type, hiding the complexity of the inheritance
hierarchy by allowing us to create Building objects by simply supplying a building variant.

Notifications
Requirements Addressed: FR_USER_INTERFACE, FR_INTERACTIVE_ELEMENTS



Notifications are only created directly within the NotificationManager, which handles
displaying multiple notifications on the screen and queueing any that cannot fit. Systems
such as Achievements and Events may create a notification with a call to the
NotificationManager createNotification() method. Initially, notifications were created directly
by these systems and drawn onto the screen, however the need to support multiple
notifications from different sources meant the NotificationManager was needed.

Achievements
Requirements Addressed: FR_ACHIEVEMENT_EARN, FR_ACHIEVEMENT_CRITERIA,
FR_ACHIEVEMENT_REWARD, FR_ACHIEVEMENT_NOTIFICATION

The Achievements system is designed to make adding more achievements very simple,
minimising code reuse by placing as much functionality as possible in the Achievement and
AchievementManager classes. All achievements extend the Achievement class which
provides the base behaviour all achievements have in common, such as displaying a
notification. The AchievementManager holds all the achievements to use in the game. When
checkConditions() is called every game tick, the manager detects if any achievements have
been earned, and applies the respective score bonus. Initially, the Achievements system
was designed not to use an AchievementManager, however this led to significant code
duplication in the render loop when checking for each condition.

Leaderboard



Requirements Addressed: FR_LEADERBOARD, FR_ADD_TO_BOARD

The Leaderboard records the top 5 recent scores and makes use of a JSON file to remain
persistent between replays of the game. The Leaderboard has not changed significantly
since its’ design as the requirements around the Leaderboard system have remained the
same.

Events
Requirements Addressed: UR_EVENTS, FR_EVENT_TYPES, FR_EVENT_FREQUENCY

Each event is a subclass of the abstract Event class, providing custom behaviour by
implementing the render method. The Event class handles common logic for all events such
as providing a Notification.



Structure After New Requirements



As shown in the diagram above, the architecture from before the new requirements has
been divided up into smaller classes, which was essential to be able to extend the project.
This allowed us to easily add the StudentSatisfaction and ScoreManager classes to meet the
new requirements.

Behavioural Diagrams:
State Diagram

The game starts initially on the StartScreen, with options to view the Leaderboard,
Instructions, play the game or quit. When playing the game, the user may pause which stops
the in game time from progressing. When the timer runs out, the game is forcefully paused
and the user has the option to return to the StartScreen.

Sequence Diagrams



This diagram shows the two main ways the user interacts with the game - by moving the
camera or placing a building. In both cases, events are triggered and handled by the
WorldInputProcessor.

This diagram shows the process of a new event starting. A notification is delivered and the
student satisfaction modifier applied.



This diagram shows the main interactions the user makes with the UI. In each case, the
interaction creates an event which is handled by the Stage the UI element is attached to.


