
Continuous Integration Report
ENG1 Team 9

Jacob Dicken
Bertie Cartwright
William Croft
James Dovener
Henry Chan



Continuous Integration Methods & Approaches

When developing our game, we placed an emphasis on frequent integration, ensuring that
when one or more team members were contributing on a given day, they would push their
changes (and pull any other members’ changes) at least once per day. This was followed in
the majority of cases throughout the development process.

Early in development we set up support in our build system for generating automated test
coverage and code style reports. Before pushing, any contributor is encouraged to generate
these reports and make an informed decision on whether to add new tests or refactor their
code prior to review. When performing code reviews, this process was also followed, with
another member generating the necessary reports in addition to manually checking the
code. Ensuring our code followed the same conventions on, for example, indentation and
method naming made development significantly easier by reducing the mental labour
involved in understanding another person’s code.

On each push to GitHub, an automated workflow detailed in the infrastructure section was
run - this provides a copy of the executable JAR generated, a code coverage report and a
code style report, which are uploaded to the job results page and can be found on our
GitHub. The results of this workflow generate a notification in a channel on our team discord
via a webhook, providing a notification to other team members when new changes are
pushed and allowing reviewers to see whether tests are still passing. This helped ensure
that integrations happened frequently enough by reminding other team members to pull new
changes.

We attempted to follow the principle of sticking to the main branch where possible, and
where a feature took multiple days to implement we would merge the latest changes from
main, ensuring no branch falls far behind as this would be difficult to integrate later.

We followed the principle of integrating small changes frequently as this lends itself well to
an Agile development process and minimises issues with integrating entire systems at once.
Implementing this system earlier in Assessment 1 would have made our development
process run much more smoothly at several key points where integrating separate systems
became a concern.



Continuous Integration Infrastructure
Early in development, we added support for JaCoCo1 and Checkstyle2 to our build system.
These are tools that integrate with Maven to provide automated code coverage and style
checking reports respectively.

We chose to use GitHub Actions to support our continuous integration processes. We
implemented a workflow with three jobs - test, build and release. This workflow is triggered
on each push to the GitHub repository.
Test

- Runs all automated tests with the maven test command
- Generate a code coverage report with JaCoCo
- Generate a checkstyle report

Build
- Runs only if the Test stage passes
- Build a copy of the current state of the project using the maven clean package

command
- Upload a copy of the executable JAR generated

Release
- Runs only on commits tagged as a release, otherwise this job is skipped
- Generates a GitHub release and attaches the executable JAR generated in the build

stage

The output from our GitHub actions workflow was also reported to a channel in our team
discord through a webhook set up at the start of development. This provided a summary of
the tests that passed and failed, and indicated whether each job was successful.

2 https://checkstyle.org/
1 https://www.jacoco.org/jacoco/


