Change Report

ENG1 Team 9

Jacob Dicken
Bertie Cartwright
William Croft
James Dovener
Henry Chan



Introduction

After inheriting our new project from another team we had to review their deliverables and
documentation and test their code before making any of our own changes.

We firstly looked through their risk assessment deliverable and made sure to note any risks we
felt were missing and others we felt no longer had any affect. Secondly we looked through the
requirements document and compared it to the product brief and made sure that all parts of the
brief were covered as users requirements and that there were functional and nonfunctional
requirements that would lead to these users requirements to be met. If this was not the case this
would be noted down to be changed. Next we looked through the architecture which helped us
understand the game but realised that this would need changing as the code itself changed and
instead made a rule that if we are changing the code in a way which alters architecture of the
code in a significant way we should note this down and update the architecture accordingly. We
also analysed the code and made note of any changes we would need to make so that it could
match the rough idea of the new requirements. After looking at the requirements and the code,
we then had a rough idea of what we needed to do and then went through the planning document
noting down every major task, including changes to the deliverables, that needed to be added to
the existing plan.

These notes that we made would be added to our weekly plans document.

To keep track of changes made to the code and documentation we used github which records
changes as commits which record all the information about each change, the time it was made
and the relative order of changes made. This not only allows us to keep track of the changes
made but also allows us to revert to a previous version if we feel that a change is wrong or not
needed. Proposed changes were recorded using GitHub Issues, which allowed us to assign team
members to work on each issue and comment on issues to keep everyone in the loop and to
propose further changes.

To keep track of changes made to the deliverables we used google docs which has an inbuilt
change management - this tracks each change in the document’s revision history and allows for
reversion if needed. Google docs also allows for change suggestions which also helps keep track
of proposed changes.

The changes made to the code and documentation would use github'’s pull system where after a
team member made a change to either the code or its documentation they could then send a pull
request to merge it with the main branch of the code. This pull request could be reviewed by other
team members who would check if the code/documentation was correct, wouldn't conflict with
other changes and corresponds with what we planned to change.

The changes made to the deliverables would be reviewed in our bi-weekly meetings so that we
could make sure the group agrees that the change is correct and corresponds to what we planned
to change.

After reviewing all the changes that had been made we would then check to see if all planned
changes had been made and remove those that had been made.

Finally in these meetings we would again analyse all our deliverables and code and plan for any
new changes we felt we needed to make.



Requirements
URL of the original document: https://jd760.github.io/deliverables/assessment1/Req1.pdf

URL of the changed document: https://jd760.github.io/deliverables/assessment2/Req2.pdf

Requirements Elicitation & Negotiation
The first thing that we changed in the requirements document was adding a bit about our

research into sensible system requirements for the game. This wasn't previously included in the
requirement document and would help us have a target specification that our game should run
on that could be referenced in the requirements tables.

User Requirements

In the user requirements table we started by changing some of the preexisting requirements
descriptions. Firstly UR_STATIC_MAP renamed UR_MAP to more closely represent its
description, was changed so that it no longer limited us to having the map be static as we felt
that to facilitate events the map may end up being changed, for example a snow event may
change the map to a snowy map. We also added the line about having obstacles blocking the
placement of buildings as this is a core part of the product brief which was missing from the
user requirements.

In the UR_LGAME_PERSPECTIVE requirement only a simple change was needed where we
changed the requirement that the game was top-down to it instead being isometric as we felt
this better matched how the game was and is meant to be.

In UR_BUILDING_PLACEMENT we changed the requirement of at least 1 recreational building to
at least 2 as this is what is specified in the product brief.

In the UR_GAME_CLOCK requirement we added a line stating that the timer should start from 5
minutes as this wasn't explicitly stated and we felt it was important that it was as this was a key
part of the product brief.

The final user requirement that was changed was UR_MINIMUM_HARDWARE which we
changed to instead require our game to run comfortably on a machine with the minimum
specification which we researched as prior to this there were no defined minimum hardware
requirements that we could use for other requirements and testing.

After changing some of the preexisting requirements we then added some new ones. These
new ones are as follows: UR_EVENTS, UR_LEADERBOARD, UR_NAME_INPUT,
UR_SATISFACTION, UR_ACHIEVEMENTS, UR_USABILITY and UR_LEXTENDABILITY.
UR_EVENTS, UR_LEADERBOARD, UR_SATISFACTION and UR_ACHIEVEMENTS were added as
they are requirements linking to core parts of the product brief which didn't already have
requirements which were events and reacting to events, a leaderboard, student satisfaction and
achievements.

We added UR_NAME_INPUT as the game needed a way to obtain the players name at the end
of the game so that it could be displayed on the leaderboard if needed.

UR_USABILITY was added as when testing the game we were given we found the game to be
functional but hard to control and not very user friendly which would definitely hurt the
enjoyability of our game. So we added a requirement to make sure that we made the game as
user friendly as possible.


https://jd760.github.io/deliverables/assessment1/Req1.pdf
https://jd760.github.io/deliverables/assessment2/Req2.pdf

Finally UR_LEXTENDABILITY was added as a low priority requirement as we felt that this would
not only help debug and add features but also help future development teams to do the same
which we believed to be useful and semi-important to our stakeholders.

Functional Requirements

In the functional requirements table we again started by editing some of the preexisting
requirements which began with a small change to FR_MAP where the wording was changed
from “static map” to “visual map” to better match the new changed UR_MAP requirement.

To go along with the changed UR_MAP requirement we also added the FR_OBSTACLES which
together with FR_LMAP will satisfy the requirements of UR_MAP.

Next we split FR_LGAME_CONTROL into FR_LISOMETRIC_CAMERA and FR_CAMERA_CONTROL
as we had moved the information about controlling the camera from UR_GAME_PERSPECTIVE
as we felt it linked more into UR_USABILITY so we did the same here where
FR_ISOMETRIC_CAMERA is a functional requirement that satisflied UR_GAME_PERSPECTIVE.
And FR_CAMERA_CONTROL, which now refers to the game being controlled using a mouse
which was found to be much easier than using the keyboard to move around the map,
contributes to UR_USABILITY.

FR_PLACE_BUILDING was split and expanded into multiple function requirements as we felt the
original FR_PLACE_BUILDING didn't contain all the necessary functional requirements to
implement UR_BUILDING_PLACEMENT. These new requirements are: FR_BUILDING_VARIETY,
FR_BUILDING_SELECT and, FR_BUILDING_PLACEMENT where FR_BUILDING_VARIETY
implements the building types part of UR_BUILDING_PLACEMENT. FR_BUILDING_SELECT also
implements part of UR_BUILDING_MANAGER as it is to do with selecting buildings from the
building menu which is also important in the functionality of placing buildings.
FR_BUILDING_PLACEMENT is practically the same as the old FR_PLACE_BUILDING.
FR_GAME_PAUSE was kept the same but a new functional requirement
FR_GAME_PAUSE_EFFECT was added which defines what should actually happen when the
game is paused which is important to UR_PAUSE_GAME's functionality.

FR_GAME_END was kept the same but a 2 new functional requirements were added which were
FR_TIMER_COUNTDOWN, which was important to add as it specifies that the timer should
count down in real time, and FR_TIMER_START, which simply specifies that the timer should
begin a 5 minutes and start counting down when the play button is pressed which again is key
to implementing UR_GAME_CLOCK.

Then we created 3 new function requirements for satisfaction which were:
FR_SATISFACTION_COUNTER, FR_SATISCATION_BUILDING_DISTANCE, and
FR_BUILDING_RATIOS which are all needed to implement UR_SATISFACTON as this user
requirement didn't previously exist and therefore had no functional requirements for it. This
reasoning also applies to FR_LEVENT_TYPES, and FR_LEVENT_FREQUENCY which were added
for UR_LEVENTS as well as FR_LACHIEVEMENT_EARN, FR_ACHIEVEMENT_CRITERIA,
FR_ACHIEVEMENT_NOTIFICATION, and FR_ACHIEVEMENT_REWARDS for
UR_ACHIEVEMENTS and FR_LEADERBOARD, and FR_ADD_TO_BOARD, for UR_LEADER_BOARD
with FR_LNAME_INPUT being a functional requirement for both UR_LLEADER_BOARD and
UR_NAME_INPUT.

FR_USER_INTERFACE is a new functional requirement for UR_USABILITY which refers to how
the Ul should be visually implemented which was added as this is an important factor in making
the game as useable as possible.




FR_INTERACTIVE_ELEMENTS is another new functional requirement for UR_USABILITY which
refers to how interactive elements like buttons should behave after being used by the user
which is very important in making the game as user friendly as possible.

Lastly FR_MINIMUM_HARDWARE was removed as “Optimise the game for standard laptops or
desktops” is not a functional requirement of the game and rather a task our team should
complete.

Non-functional Requirements
For the Non-functional requirements table we firstly added a new requirement

NFR_GAME_ENGAGEMENT which is to do with how much the user enjoys the game and was
added to satisfy the new second piece of criteria on UR_GAME_ENJOYABILITY.

Next on NFR_GAME_DIFFICULTY we added UR_USABILITY as one of the user requirements
it contributed to as we thought there was some overlap there and we also changed the fit
criteria of “Player completion rate > 50%” to a more meaningful statement about satisfaction
score as we felt that completion rate didn't really have a mean anything in our game as the
game would start and end irrespective of what the user did while the game was running.
NFR_MINIMUM_HARDWARE was changed to reference the minimum requirements we set for
our game which didn't previously exist. The fit criteria was changed to 58 fps from 30 with a 60
second average as we felt 30 fps was too low for such a simple game and our target should
instead be 60 fps.

NFR_INTERACTIVE_ELEMENTS was added so that we could have a fit criteria for how our
buttons should work within UR_USABILITY.

NFR_OPERABILITY was added as we felt it was important to determine how comfortable new
players were with the game. The time limit was set to 2 minutes as we expect players to spend
only a couple minutes to learn the controls and become comfortable with the simple concept of
the game.

NFR_DOCUMENTATION and NFR_CODE_MODULARITY were added as needed ways to measure
how useful and understandable our documentation was as well as how easy our code was to
extend so that we could satisfy UR_EXTENDABILITY.



Architecture

URL of the original: https:/jd760.github.io/deliverables/assessment1/Arch1.pdf
URL of the changed document: https://jd760.github.io/deliverables/assessment2/Arch2.pdf

The tools and processes used by the previous team to design the architecture were very similar
to our own, largely relying on PlantUML for the diagrams. We did not use Graphviz or Draw.io in
our architecture design process or any of the remaining diagrams so references to these were
removed.

The class diagrams for GridPosition, GridArea and CollisionDetection are unchanged due to
them being suitable for the new requirements with no modification.

We created a high-level structure diagram showing the state of the architecture before the new
requirements were added. This structure was then changed dramatically in order to
accommodate the new requirements. Mainly this involved dividing up the responsibilities of the
main components in the original architecture into many smaller classes responsible for specific
requirements such as the BuildingMenu class. An updated diagram showing the final structure
has been added to show the evolution of the architecture due to the additional requirements.

The original document goes into little detail on the methods used to devise the architecture for
the project, so we had to start our development of the architecture from the point at which we
inherited the project.

Many of the diagrams and descriptions for various parts of the project needed to be adjusted as
the architecture has changed significantly from inheriting the project, due to the introduction of
additional requirements. The original versions of all diagrams have been preserved on the
website on the diagrams page.

We added several new class diagrams to address new requirements:
- StudentSatisfaction
- Notifications
- Leaderboard
- Achievements
- Events

We also added a section at the start of the document describing and justifying the architectural
style as this was missing from the original report we inherited.

Sequence & State Diagrams
While the existing sequence and state diagrams are still relevant to our final architecture, we

decided to create more detailed diagrams that better represent the actual processes,
particularly with the sequence diagram. The initial diagrams have been placed on the website
and replaced with new versions and additional sequence diagrams.


https://jd760.github.io/deliverables/assessment1/Arch1.pdf
https://jd760.github.io/deliverables/assessment2/Arch2.pdf
http://jd760.github.io

Method selection and planning

URL of the original: https:/jd760.github.io/deliverables/assessment1/Plan1.pdf
URL of the changed document: https://jd760.github.io/deliverables/assessment2/Plan2.pdf

Due to the nature of this deliverable, a large portion of the document was rewritten rather than
directly changed, as sections such as team organisation have changed completely as a new
team is now working on the project.

Software Engineering Methods and Development/Collaboration Tools

As we are inheriting a project from another team, it made sense for our team to extend the
previous systems rather than reinventing the wheel. For example, we initially considered
changing the build system to Gradle, as we are more familiar with this system and our research
suggests LibGDX is most commonly used with Gradle. However, we decided to keep the
previous team’s build system as migrating from Maven appears to be a larger task than simply
extending the existing solution.

The majority of the previous team'’s choices for development tools aligned with our own choices
in the previous assessment, notably their use of GitHub for version control and use of
feature-driven development.

One update to this section was to clarify the development environments used by our team
members and choice of collaboration software.

Team Organisation
Before starting work on the inherited project, we first created a plan and task allocation, with a

focus on team organisation for this assessment. From assessment 1 we had an awareness of
which team members perform best at certain tasks, so used this to inform our changed team
organisation system. This follows a similar system to our own team'’s structure in assessment
1, with slightly changed areas of focus. Our system was notably different to the previous team'’s
organisation structure, which split the team into smaller working groups that tried to work
independently on a subset of tasks each.

Planning
The only updates needed to this section were to add weekly snapshots of our plan since

inheriting the project. No other changes to this section are justified as the plan used by the
previous team has no bearing on our development process.


https://jd760.github.io/deliverables/assessment1/Plan1.pdf
https://jd760.github.io/deliverables/assessment1/Plan1.pdf

Risk assessment and mitigation

URL of the original: https:/jd760.github.io/deliverables/assessment1/Risk1.pdf
URL of the changed document: https://jd760.github.io/deliverables/assessment2/Risk2.pdf

The first thing that was changed about the risk assessment and mitigation document was the
format of the risk register itself. Here we added an ID column which helps us keep track of and
reference each risk if needed. We also added a type column for each risk as assigning a type to
each risk helps us keep track of what part of the project each risk affects. The Risk column was
changed to a description column as we felt the prior risk names were not descriptive enough
leading us to not know what each risk actually was and its effects; this new column also
contains the description from the former impact column which is now a severity column. The
severity column follows the rating system of the likelihood column which will help us quickly
discern the severity of each risk and if needed easily change them by changing the rating.
Finally the mitigation column was renamed to Avoidance/Mitigation/Contingency Plan(s) as this
column doesn’t only contain ways to mitigate risks but the other two methods too. To help
distinguish between the 3 methods of risk management when there were multiple for one risk,
we split them each into their own sub row with a title of what method they were using. The last
minor change to the risk register as a whole is that the severity and likelihood columns are now
colour coded so that the information contained within those columns is even clearer to our
team.

All these changes to the risk register are reflected in the Risk Management Process part of the
document which has a paragraph at the bottom that describes what each column is for and
what information they should contain. In the analysis stage we added a line about how we
placed each risk into types and how we went about deciding on the likelihood and severity
ratings. This was added so that we will know how the types and ratings should be decided by
our group.

The format change of the risk register led to most of the contents of the risk register being
changed to some extent. With firstly all owners of every risk being changed from the prior group
members to our group members.

Then each of the preexisting risks were reformatted with “Miscommunication” now being “R11”
in the new risk register. “Uneven Workload” is now “R15” and “Creative Differences” is now
“R16” with both of these getting a severity rating of medium as we felt that this risk wouldn't be
too severe but could start to slow down the pace of development if it persisted. “Overambition”
became “R13” where we changed the likelihood to medium as we felt it that it was less likely
that our team would drastically increase the scope of the project this late in as we all knew what
to do and would make sure that the core requirements were implemented first; however the
severity rating was set to high because if for whatever reason this was to occur it would
severely hurt our project to not be able to implement all the core requirements in time. “Lack of
Feedback” is now “R5” with its description referring to the requirements not corresponding to
what the customer wants, and the mitigation of meeting frequently with the customer. The
changed “R5” is now not specifically being about a lack of feedback but about how the
requirements may not be correct which can be remedied by having lots of feedback from the
customer. Finally for the preexisting risks “Bugs and other performance issues” is now “R17”
which was given a medium severity as while some bugs may be very severe, most especially
the ones that are missed during development should be mostly minor and hopefully easy to fix.


https://jd760.github.io/deliverables/assessment1/Risk1.pdf
https://jd760.github.io/deliverables/assessment2/Risk2.pdf

Next we added some new risks to the risk register that were either totally new risks we
considered or risks that we had previously found and felt still applied to this new project.

Firstly “R1” which is the risk that one or more of our team members are unable to participate
was put as a high severity risk as if this was to occur it could lead to more pressure on fewer
group members and eventually lead to lots of work being incomplete or missing. “R2” (Use of
poor quality libraries) and “R3” (Code structure and readability reduce as the project
progresses) were added as we felt these were risks that may be unlikely to occur but if they did
could have an impact on our ability to add new features to and test our project. “R4” (Product is
unable to be built/run on the required hardware or Operating Systems) was added as even
though it is a low likelihood risk, if it was to occur our customer wouldn't be able to use the
product meaning it may as well have met none of the requirements. “R6” which refers to the risk
of the requirements being changed was added as while it was deemed to have a low likelihood,
if it was to happen it could be very severe as it could lead to us not meeting all the requirements
for the project. “R7” (Misalignment between member’s strength and role) was added as a low
likelihood risk, as by now we mostly know the strengths of each team member, but with a
medium severity as if this was to happen it could slow down the project. “R8” (Unclear or
ambiguous requirements) we felt was important to add as we had to analyse the new
requirement tables and also add the new requirements for project 2 into them so we had to
make sure that these requirements were also clear and unambiguous. “R9” (Use of tools that
are overcomplicated or only one team member understands) was added as a risk with a low
likelihood and a medium severity as while we would now be familiar with the tools for our
original project, the tools used by the other team in this new project may be unfamiliar which
could slow down our development as we have to learn the new tools. “R10” referring to the risk
of poor time management was added as we felt there would be highly severe consequences if
we poorly managed our time e.g. we missed the deadline to hand the project in with all the
requirements met. “R12” (Project schedule is not defined or understood) was added with a
medium likelihood and severity as we would need to create a new project schedule for the new
project which could be misunderstood leading to team members not knowing what pieces of
work they need to complete. “R14” (Parts of the writeup are poorly formatted or hard to
understand) was added as we inherited a whole new set of writeup/deliverables which we need
to edit and maybe or end up being poorly formatted leading the information to be hard to
understand. Finally “R18” (The project that we take over has poor libraries, coding practices,
documentation or deliverables) was added as this risk heavily applies to this second project as
we have just taken over another project and need to make sure that there are no prior faults
within it that will harm the future development of the project.



	Change Report 

