Requirements

ENG1 Team 9

Jacob Dicken
Bertie Cartwright
William Croft
James Dovener
Henry Chan

akrowbd =

This document outlines the procedure followed in acquiring and presenting the user and
system requirements for the development of our project, UniSim, a single-player
simulation game that allows the player to build their own university campus.

Requirements Elicitation & Negotiation

The requirements gathering process began with brainstorming sessions among team
members, with the aim of aligning our creative visions with the goals outlined in the
product brief. To facilitate this, we conducted an interview with our client, which was crucial
for understanding the overall vision for the game, its key features, and user interactions.

We began the interview by asking the client for their Single Statement of Need (SSON)
for the product, which helped us become acquainted with the overall goal of the project.

SSON: “I'm looking for a short, fun, jovial game for young adults to play, to enjoy seeing
the positive aspects of working in computer science.”

With this, we were able to note the intended audience and use of the game:
Target Audience: Young adults (16-21).

Intended Use: A fun, entertaining game with a focus on making computer science
appealing to the player in a more casual setting.

The interview then involved our client providing valuable input on the game’s style and
perspective, the platform and performance, and the gameplay elements, allowing us

to ensure that our requirements align with the expectations of our stakeholder.
Additionally we did some further research into sensible system requirements for the
game (e.g system specs and supported 0S’s). From this, we found that devices with

at least 2GB of RAM and 2 or more CPU cores should be sufficient for a simple 2D
game.

The negotiation phase involved us prioritising the requirements based on feasibility and
importance, with the time constraint in mind. Our client’s input was significant in shifting our
focus towards creating a Minimum Viable Product (MVP) that delivered a simple yet
engaging gameplay experience. For instance, while we were tempted by the idea of building
multiple maps with varying difficulty levels, our client stressed the importance of starting
with a single, well-designed map with predefined geography, to allow us to collect feedback
before exploring more complex systems. Thus, this arrangement allowed us to effectively
obtain and prioritise our requirements in a way that will guide us to build a game that will
both meet the client's vision and be enjoyable for the players.

Requirements Presentation

We are presenting our user and system requirements in the form of structured tables that
include the ID and description of each requirement. With this approach, we aim to create a
clear roadmap for developing the game, allowing us to set goals and track our progress
using this referencing system. The next steps will involve translating these requirements
into the architecture and implementation phases.

User Requirements:

These requirements reflect the needs or expectations of the game’s end-user. They focus
on user interactions, outlining specific tasks that the players want to perform. The table
below contains the IDs, descriptions and prioritisation of the user requirements of our game.

o oo

UR_MAP The game should have a map with predefined characteristics including High
obstacles where buildings cannot be built.

UR_GAME_PERSPECTIVE The game should have an isometric perspective which allows for High
greater visibility.

UR_GAME_ENJOYABILITY The game should have a lighthearted, positive atmosphere and be High
engaging for first time and repeat users.

UR_BUILDING_PLACEMENT The player must be able to place buildings with their being at least one High
of each type of building: teaching, accommodation, catering and at
least two recreational buildings.

UR_BUILDING_MANAGER The player should have access to a simple interface for managing High
buildings.

UR_GAME_CLOCK The game should have a countdown timer displaying the remaining High
game duration which starts from 5 minutes.

UR_PAUSE_GAME The player should be able to pause the game at any time during the High
5-minute session.

UR_BUILDING_COUNTER The game should display a simple building counter showing how many Medium
of each building have been placed so far.

UR_GAME_DIFFICULTY The game should be simple enough for young adults to enjoy without High
needing advanced skills.

UR_MINIMUM_HARDWARE The game should run comfortably on devices with the minimum Medium
specification to play the game which is: 2GB of RAM, and 2 or more
CPU cores.

UR_EVENTS The user shall be able to interact and react to events that occur during High

the course of the game there should be at least one positive, negative
and neutral event.

UR_LEADERBOARD The users should be able to see a leaderboard that displays the name High
and score of the top 5 players.

UR_NAME_INPUT The user should be able to input their name to be seen on the High
leaderboard at the end of the game.

UR_SATISFACTION The game should have a satisfaction score that the user should be able High
to increase and decrease in multiple ways including: placing more
buildings; having certain types of buildings located near each other; and
reacting to events accordingly.

o o

UR_ACHIEVEMENTS The user should be able to earn achievements over the course of the High
game by filling certain requirements. These achievements will positively
or negatively affect the player's score at the end of the game.

UR_USABILITY The game should be easy to control, use and understand for a first time Medium
user and user actions should be streamlined to avoid repetition.

UR_EXTENDABILITY The game may be extendable which allows for future additions to the Low
game like new building types.

Functional Requirements:

These requirements describe what the game must do, detailing the functions and
features that it must support. The table below contains the IDs and descriptions of the
functional requirements of our game, as well as their link to the user requirements.

O

FR_MAP
FR_OBSTACLES
FR_ISOMPETRIC_CAM
ERA
FR_CAMERA_CONTRO
L

FR_BUILDING_VARIET
Y

FR_BUILDING_SELECT

FR_BUILDING_PLACE
MENT

FR_BUILDING_MANAG
ER

FR_GAME_PAUSE

FR_GAME_PAUSE_EFF
ECT

FR_TIMER_COUNTDO
WN

FR_TIMER_START

FR_GAME_END

FR_BUILDING_COUNTE

R

FR_SATISFACTION_CO
UNTER

FR_SATISFACTION_BUI
LDING_DISTANCE

The game will provide a visual map for the user to traverse.

The map shall have preplaced obstacles that block the user from
building on top of them

The game should provide a camera that is viewing the map from
an isometric perspective

The camera should be controlled via the user’s mouse with click
and drag to move around the map and the scroll wheel being used
to move in and out.

The game shall have at least one building of every type namely:
teaching, accommodation, catering and at least two recreational
buildings

The game will allow the users to select buildings from the building
manager menu.

The game will allow a user to place the selected building only in
valid places e.g inside the map and not on an obstacle or building.

The game shall provide Ul and controls to manage buildings.

The game will be pausable on the player's request.

While the game is paused the timer will no longer decrement.

The timer will decrement at a rate of 1 second for every real world
second

The timer will start at a time of 5 minutes and begin decrementing
as soon as the (play button is pressed/the game begins).

The game shall terminate and end the game when the 5 minute
timer is up.

Display a counter to show the player the number of each type of
building placed.

The game should display the satisfaction as a percentage to the
user.

The satisfaction number should go up and down depending on
how close buildings of certain types are together. E.g the

User Requirement(s)

UR_MAP

UR_MAP
UR_GAME_PERSPECTIVE

UR_USABILITY
UR_BUILDING_PLACEMENT

UR_BUILDING_PLACEMENT
UR_BUILDING_MANAGER

UR_BUILDING_PLACEMENT
UR_BUILDING_MANAGER

UR_GAME_PAUSE

UR_GAME_PAUSE
UR_GAME_END
UR_GAME_END
UR_GAME_END
UR_BUILDING_COUNTER
UR_SATISFACTION

UR_SATISFACTION

satisfaction number will go up if an accommodation building is
nearer to a catering building.

FR_BUILDING_RATIOS | The satisfaction number should go up and down depending on the | UR_SATISFACTION
ratio of different building types. E.g the satisfaction will go down if
there are too many accommodation buildings and not enough
catering ones.

FR_EVENT_TYPES Events should come in 3 different types: positive(Which benefits UR_EVENTS
the player), negative(Which hinders the player) and neutral(Which
does not affect the player).

FR_EVENT_FREQUENC | Over the course of the game at least 3 events should occur. UR_EVENTS
Y
FR_LEADERBOARD A leaderboard containing the names and scores of the top five UR_LEADERBOARD

players should be visible to players.

FR_ADD_TO_BOARD If the current player reaches a score that is higher than the fifth UR_LEADERBOARD
highest player on the leaderboard, their name and score will
instead be featured on the leaderboard and the current fifth
highest player will be removed.

FR_NAME_INPUT At the end of the game the user will be requested to input their UR_NAME_INPUT
name to be shown on the leaderboard. This will be done using UR_LEADERBOARD
character input.

FR_ACHIEVEMENT_EA | The player will be able to earn achievements throughout the game. | UR_ACHIEVEMENTS
RN

FR_ACHIEVEMENT_CR | The game will check each achievement's criteria and if the criteria | UR_ACHIEVEMENTS
ITERIA for a specific achievement is met the player will earn that
achievement.

FR_ACHIEVEMENT_NO | The game will notify the player when they earn a specific UR_ACHIEVEMENTS
TIFICATION achievement.

FR_ACHIEVEMENT_RE | Achievements should affect the players final score in a positive UR_ACHIEVEMENTS
WARDS way.

FR_USER_INTERFACE | The Ul should display only important information to the user so UR_USABILITY
that it is not overly complex and overwhelming.

FR_INTERACTIVE_ELE | All Interactive elements will react when clicked or moved (for UR_USABILITY
MENTS example when a button is pressed its colour changes or a sound
is made).

Non-Functional Requirements:

These requirements describe how the game performs a task rather than what it should do.
They ensure that the game meets certain standards of performance, usability, and
reliability. The table below contains the IDs, descriptions, links to the user requirements and
the fit criteria of the non-functional requirements of our game.

NFR_GAME_ENJOYABILITY

NFR_GAME_ENGAGEMENT

NFR_GAME_DIFFICULTY

NFR_MINIMUM_HARDWAR
E

NFR_INTERACTIVE_ELEME
NTS

NFR_OPERABILITY

NFR_DOCUMENTATION

NFR_CODE_MODULARITY

The Game should
maintain a positive,
lighthearted atmosphere.

The game should be
engaging to first time and
repeat users.

The game should be
accessible and
straightforward, without
requiring advanced skills.

On machines with the
minimum requirements
the game should run
smoothly, at a framerate
of around 60, without
hitches at any point
during gameplay.

Interactive elements (for
example buttons) should
react quickly to user use.
Preferably with some
signal to the user like a
sound or colour change.

The game should be
easily playable and
navigable by new players.

The game should come
with clear documentation
that explains what each
part of the code does and
how to modify it.

The code should be
modular and easily

extendable, without
making the program
difficult to follow.

UR_GAME_ENJOYABILITY

UR_GAME_ENJOYABILITY

UR_GAME_DIFFICULTY

UR_USABILITY

UR_MINUMUM_HARDWA
RE

UR_USABILITY

UR_USABILITY

UR_EXTENDABILITY

UR_EXTENDABILITY

Response to the game’s
atmosphere should be at least
70% positive.

Response from first time and
repeat users on their engagement
with the game should be at least
70% positive.

The average satisfaction score of
a new player when they end the
game should be above 40%.

During performance testing the
60-second average frame-rate
should exceed 58. The lowest 1%
of frame times should also be
above 50.

Interactive elements must react
within <1 second of being used.

A new player shall be comfortable
with the game after around 2
minutes of use.

The documentation should be
understood by users who have no
prior knowledge of the code.

Classes should hold references to
necessary related objects and no
more.

