Software Testing Report

ENG1 Team 9

Jacob Dicken
Bertie Cartwright
William Croft
James Dovener
Henry Chan



Methods and Approaches

For unit testing, we used JUnit5 to enable us to easily write and run short tests that test
small portions of our code. We chose JUnit5 for its simplicity and easy integration with
Maven, our build system. This is a suitable approach for developing a small game, as we
could begin writing tests quickly and efficiently, sacrificing a minimal amount of our limited
collective time working on setting up an automated testing solution.

When designing a Cl pipeline at the start of development, we set up automated unit testing
with JUnit and code coverage report generation with JaCoCo. This allows us to track the
effectiveness of the tests we have written and identify new areas of the codebase that need
testing. This encourages writing code in a testable manner, allowing for a significant portion
of the codebase to be covered by tests. This approach to testing makes future development
and refactoring much easier as we can verify that existing code is valid and any changes will
be reflected in the next integration - which should be within a short time due to our ClI
process.

Using the test reports generated by JaCoCo, we can identify which lines and execution
paths through the program are tested, identifying potential missed test cases that would not
be visible by simply looking at which tests pass/fail. This is helpful for use in code reviews
prior to merging a new feature, as missing tests can be identified and added to ensure the
code is correct.

We also designed a set of manual end-to-end tests to be carried out in conjunction with
these automated tests. The manual tests are structured as a table with columns for the ID,
objectives, preconditions, steps to execute and expected result. They are designed to test
the gameplay and user interface holistically in a way that is not possible with automated
tests. For example, all user interface elements are covered in a manual test, even if they are
partially covered in an automated test. This is so we can guarantee that these high-level
elements of the program work and to test that all parts of the codebase can function as a
complete product.



Test Results and Coverage

All 124 automated tests were passed by the current implementation, both when being run
locally and by the Github Actions CI workflow. All 10 manual tests are also passed by the
current implementation.

The automated tests are split into categories based on which section of the code they test

and cover elements of the following requirements:

Test File

Requirements Tested

AchievementTest.java

FR_ACHIEVEMENT_EARN

SatisfactionAchievementTest.java

FR_ACHIEVEMENT_CRITERIA
FR_ACHIEVEMENT_REWARDS

BuildingCounterTest.java

FR_BUILDING_COUNTER

BuildingFactoryTest.java

FR_BUILDING_VARIETY
FR_BUILDING_MANAGER

BuildingManagerTest.java

FR_BUILDING_MANAGER

BuildingTypeTest.java

FR_BUILDING_VARIETY

MapObjectTest.java

FR_BUILDING_PLACEMENT

ClockTest.java

FR_TIMER_COUNTDOWN
FR_TIMER_START
FR_GAME_PAUSE_EFFECT

CollisionDetectionTest.java

FR_BUILDING_PLACEMENT
FR_OBSTACLES

GridAreaTest.java

FR_BUILDING_PLACEMENT

GridPositionTest.java

FR_BUILDING_PLACEMENT

ScoreManagerTest.java

FR_LEADERBOARD
FR_ACHIEVEMENT_REWARDS

LeaderboardTest.java

FR_LEADERBOARD
FR_ADD_TO_BOARD

IntRangeTest.java

FR_BUILDING_PLACEMENT

MenuTabTest.java

FR_BUILDING_SELECT
FR_BUILDING_MANAGER

DepthSortingTest.java

FR_ISOMETRIC_CAMERA

StudentSatisfactionTest.java

FR_SATISFACTION_BUILDING_DISTANCE
FR_BUILDING_RATIOS
FR_EVENT_TYPES




The manual tests cover all remaining functional requirements and overlap many of the
functional requirements that are tested by the automated testing. They also cover some
non-functional requirements. A table detailing which requirements are covered by the
manual tests can be found here. As each user requirement has one or more functional or
non-functional requirements relating to it, our test coverage implicitly covers each user
requirement. The only user requirements that are not covered by any test are
UR_USABILITY and UR_EXTENDABILITY. UR_USABILITY relates to the ease of use by a
first-time user, which we can’t test easily or fairly, even with a manual test. The closest we
were able to come to testing this requirement was in our user evaluation.
UR_EXTENDABILITY relates to the structure and quality of the code of the game. As such,
the closest we were able to come to testing the requirement was in our automated code style
report in our Cl workflow.

We favoured automated tests for any part of the program that did not involve user input or
graphical elements. Automated tests have 36% code coverage, which includes almost all of
the game logic. They allow us to have more confidence that these parts of the program work
with a variety of inputs and preconditions and do not fall victim to edge cases. These tests
were especially helpful for features such as student satisfaction, as they allow us to verify
that each factor that contributes to the satisfaction works as intended by testing them in
isolated cases.

Manual tests cover all user interface and gameplay elements. This allows us to ensure that
the game works as a complete product. When used in conjunction with the unit tests, they
allow us to verify that the game will work as the user expects it to across almost every use
case.

Testing Material URLs
The manual testing report, code coverage report and code style check reports can be found

on the website testing page, with an additional link to the manual testing page provided
below.

Website Testing Page: https://jd760.github.io/testing.html
Manual Tests: https://jd760.qgithub.io/diagrams/assessment2/testing/Manual%20Tests.pdf



https://jd760.github.io/diagrams/assessment2/testing/Manual%20Tests.pdf
https://jd760.github.io/testing.html
https://jd760.github.io/diagrams/assessment2/testing/Manual%20Tests.pdf

	Software Testing Report 
	Methods and Approaches 
	Test Results and Coverage 

